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Abstract—Computed tomography (CT) reconstruction of 

objects in luggage is affected by surrounding clutter, which 

can contribute artifacts such as streaking and beam 

hardening.  We have been investigating a constrained 

conjugate gradient (CCG) algorithm for CT reconstruction. 

We have found that the time required to perform each 

iteration of the CCG can be reduced by a factor of 10 or more 

by using an approximation to the error in the minimization 

line search. We have also found that ray weighting can 

alleviate streak artifacts. 

 
Index Terms—Gradient methods, Least squares methods, 

Reconstruction algorithms, X-ray tomography 

 

I. INTRODUCTION 

OMPUTED tomography (CT) reconstruction of many 

objects of interest is affected by surrounding clutter.  

The clutter may contribute scatter, beam hardening and 

photon starvation [1].  This case is particularly important in 

security applications such as checked baggage scanning, 

where quantitative data are used to decide whether a bag 

contains a threat.  Clutter can significantly alter the 

reconstructed attenuation of a material or create false 

alarms. Iterative reconstruction techniques offer a number 

of possible ways to alleviate many of these environmental 

effects, including incorporation of prior knowledge, 

regularization and weighting of rays. 

An example of environmental effects is shielding, which 

occurs when a highly-attenuating material blocks many of 

the projections of a less attenuating material.  An example 

of this effect is a steel bar lying across a bottle of jelly in an 

airport bin (Fig 1).  If reconstructed using filtered back-

projection [2] (as in 1a), beam hardening and photon 

starvation make the bar appear hollow and some of the 

streaks in air have higher image intensity than the jelly.  
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The streaks in the jelly change its mean attenuation.  Many 

of the effects of shielding can be alleviated by using a ray-

weighted iterative reconstruction (as in 1b). 

 
(a)           (b) 

Fig. 1.  (a) Filtered backprojection reconstruction of a steel bar lying over a 

bottle of jelly in an airport bin.  Note that the streaks in empty air have 

points of higher intensity than the jelly, blur the space between the bar and 

the jelly, and that the bar appears to be hollow. (b) Ray-weighted iterative 

reconstruction.  Note that the streaks have been diminished, there is a clear 

separation between the jelly and the bar, and the jelly is more uniform. 

 

Scatter, beam hardening and photon starvation act to 

change the x-ray features of materials in luggage.  If a 

particular set of features is used for explosive detection, 

these changes require enlarging the regions of feature space 

where it is necessary to raise an alarm and thus increase the 

false alarm rate (Fig 2).  The goal of our iterative 

reconstruction work is to show that the effects of containers 

and concealment can be reduced. 

 

 
Fig. 2.  The goal of our iterative reconstruction work is to show a reduction 

in the size of the feature space where an alarm must be raised.  Features 

may include x-ray attenuation coefficients, effective atomic number, 

density, texture, etc.  “Bare” is the object scanned as is without clutter. 

 

One of the drawbacks of iterative reconstruction 

techniques is the amount of computer memory and time 

they require.  We have been examining acceleration 

techniques for constrained conjugate gradient reconstruction 

and have found that using an approximation to the error can 
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accelerate the reconstruction by more than an order of 

magnitude. 

The purpose of this work is to report on our results to 

date using a ray-weighted constrained-conjugate-gradient 

iterative reconstruction technique.  

II. RECONSTRUCTION ALGORITHM 

A. High Level Overview 

We first generate a model to fill space.  This model may 

be comprised of blobs, regular voxels, or pieces (if we have 

prior knowledge of the object to be scanned).  We 

determine the interaction of the model with all the rays and 

prune those parts of the model that are un-attenuating.  The 

reconstruction approach we use is to minimize the mean-

square error function of the model for all attenuated rays.  

We use the adjoint method to find the gradient of the error 

function for every voxel [3].  This gradient is used in a 

constrained conjugate gradient algorithm [4] to determine 

the search direction for error minimization.  An iteration of 

the method consists of: 

 For each ray: 

o Execute the forward model, 

o Determine the mismatch between the forward model 

and the data, 

o Distribute the error gradient to the parts of the model 

that interact with the ray. 

 Generate an appropriate direction given the error 

gradient, regularization, and the previous descent 

direction. 

 Perform line minimization to find the minimum error in 

the chosen direction. 

 If the error is small enough, exit, otherwise perform 

another conjugate gradient iteration. 

B. Adjoint Method as a Source of the Gradient 

We use the adjoint method on the one dimensional ray 

equation to determine the error function gradient for the 

voxels along the ray.  We represent position along the ray 

by s, modeled intensity along the ray at any point by I(s), 

and modeled attenuation at any point along the ray by (s).  

The initial intensity of the ray is given by I(0) = I0.  The one 

dimensional equation for intensity along the ray is 
  

  
                             (1) 

where in this case (s) is a Dirac delta function.  We define 

the error functional of the attenuation distribution as 

        
 

 
                        

 
       (2) 

where sfinal is at the detector and Iobs is the detected 

intensity. 

We want the gradient of the error with respect to the 

modeled attenuation distribution.  This gradient, when 

integrated with the variation in the attenuation, gives the 

variation of the error: 

                                 (3) 

here the  indicates variation.  The variation of the ray 

equation is given by 
   

  
                               (4) 

and the variation of the error is given by 

                                           .   (5) 

The forward ray equation represents forward projection 

through the model.  The adjoint ray equation describes the 

backward projection of the error between the model and the 

observed data: 

 
   

  
                             (6) 

where the source term  sS
~

 is, in effect, an initial 

condition: 

                                             (7) 

and thus the variation of the error is given by 
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Using the identity  
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and realizing that we can disregard the right hand term of 

(9) because it is zero at the endpoints, we find (8) becomes 

            
   

  
                       (10) 

Substituting (4) into (10) yields a form of the variation of 

the error from which we can easily extract the gradient: 

                                        . (11) 

The gradient is thus 

                                (12) 

 

Evaluating the Gradient Along a Ray 

Given the gradient of the error as a function of position 

along the ray, how do we evaluate it?  For simplicity, 

assume a uniform attenuation distribution, (s) = .  Over 

the course of the forward projection, the intensity at any 

position is then: 

        
            

   .           (13) 

Suppose the result of the forward projection is not the same 

as the observed intensity.  The difference is the initial 

condition on the back projection.  Over the course of the 

back projection, the intensity at any position is: 

                               
                (14) 

and the resultant product at any position is 

                                                (15) 

Equation (15) holds for any distribution of attenuation along 

the ray for the simple attenuation model. 

 

Evaluating the Gradient Along a Ray for a Voxel 

If the attenuation distribution to be found is represented 

by the sum of N basis functions i(s) with weightings pi 

             
 
                 (16)

 then the finite-dimensional gradient is given by 
  

   
                                           (17) 

where Pi is the projection of the ray through the basis 

function.  



 

Evaluating the Total Gradient for a Voxel 

We extend the error for a ray to the error over the entire 

reconstruction as follows: 
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where m is the ray index,  determines the balance between 

the pure error term and the total variation regularization 

term, and wm is used to weight the rays. The gradient for the 

ith voxel is then 
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where Pi,m is the projection of the mth ray through the ith 

voxel. 

C. Model Pruning 

In many cases there are regions of the model that are 

intersected by rays that are un-attenuated.  It is a waste of 

computational resources, and a potential source of error, to 

let those parts of the model affect the calculation.  The way 

we determine which parts of the model to eliminate is to 

count both the number of ray interactions that each part of 

the model experiences as well as the number of those 

interactions that occur with un-attenuated rays. 

If the number of un-attenuated interactions is greater than 

a chosen ratio of the total number of interactions (we use 

0.25), then that piece of the model is eliminated.  One 

problem that we have encountered is defining the threshold 

for an un-attenuated ray. 

D. Approximate Error 

One of the most time-consuming steps of many descent 

methods, for example the conjugate gradient algorithm, is 

the search for the minimum in the descent direction.  This 

can involve tens of evaluations of the forward model and 

error function for the problem.  For even a modest problem 

involving 1000 rays in 1000 views interacting with 

approximately 1000 voxels apiece, there are on the order of 

1e9 multiply-adds per forward modeling and error 

evaluation. 

There is a long history in the conjugate gradient solver 

community of trying to cut computational effort by using 

inexact line searches [5,6,7].  In all of these efforts the line 

search is stopped before it finally converges.  Another way 

of using these results is not to stop the line search before it 

converges, but to use an approximation to the error.  If we 

take a random sample of the set of all rays for each 

conjugate gradient iteration and use that to approximate the 

behavior of the error in the minimization step, we can cut 

the computational effort significantly.  The approximate 

error we use is the squared error of a random subset of the 

rays that have at least 0.1% mismatch between the modeled 

ray intensity and the detected ray intensity.  The actual 

value of the approximate error does not matter as long as 

the minimum of the approximate error occurs near the 

minimum of the true error (as defined in [5], [6], and [7]). 

One full forward model and error computation must be 

performed before the line search in order to generate the 

gradient for the entire problem.  This cuts the computational 

effort of the line search down to less than two full 

evaluations of the forward model (and resultant error) and 

consequently speeds the algorithm by a factor of between 

10 and 40 times. 

The problems we have observed using this technique are 

that close to the converged solution it becomes difficult to 

select an appropriate set of rays with which to approximate 

the error.  At this point it is reasonable to switch to the full 

error conjugate gradient.  Depending on when this switch 

occurs it may significantly reduce the time savings of the 

method.  Another drawback is that the same data will yield 

different results depending on which random sets of rays are 

used in the line searches.  This drawback can be alleviated 

by switching to the full error minimization as the problem 

nears convergence. 

E. Ray Weighting 

One of the strengths of iterative methods is that rays can 

be weighted in importance.  A ray that is heavily attenuated 

will have more Poisson noise and be more sensitive to 

scatter and beam hardening.  By adjusting the weights of the 

rays we can incorporate our knowledge of these noise 

sources.  In [8] a case is made for weighting by the ray 

transmission, Iobs/I0.  We examined two ray weighting 

policies: 
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which weights a ray by the transmission to a power  p, and 
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which weights rays by a sigmoidal function, erf,  centered 

around x with a sharpness s.  These weighting policies are 

illustrated in Fig. 3. 

 

 
(a)            (b) 

Fig. 3.  (a) Ray weighting by powers of transmission.  Each curve 

represents the weighting by transmission to a different power. (b) Ray 

weighting by a sigmoidal function of ray transmission.  Here x = 0.5 is 

fixed and each curve illustrates the effect of a different s. 

 

We use the situation of the bar of steel suspended over 

the container of jelly (Fig. 1.) as our sample problem.  One 

metric for performance is the difference between the mean 

jelly attenuation in this situation as compared to the mean 

jelly attenuation when it is scanned alone (bare) in a bin.  

Another metric is the flatness of the attenuation along the 

length of the steel bar.  For this problem we are not using 



 

regularization, so  = 0.  In this situation we have found that 

ray weighting by powers of transmission yields better 

results than ray weighting by sigmoidal functions.  This is 

illustrated by Figs. 4-9.  In Figs. 5-9 attenuation is measured 

in Livermore Modified Hounsfield Units (LMHU) which 

assigns the attenuation of air to 0 and water to 1000. 

 
Fig. 4.  Lineouts taken along steel bar and through bar and jelly to 

determine the performance of the reconstruction as a function of ray 

weighting. 

 

 
Fig. 5.  Lineouts through steel bar and jelly for analytic and iterative 

reconstruction with transmission power ray weighting.  

 

 
Fig. 6.  Lineouts through steel bar for analytic and iterative reconstruction 

with transmission power ray weighting.   

 

 
Fig. 7.  Mean and standard deviation of jelly as a function of transmission 

power ray weighting compared to jelly alone (bare) in an airport bin. 

 

 
Fig. 8.  Mean and standard deviation of jelly as a function of the strength 

of sigmoidal ray weighting.  The center of the sigmoid was chosen to be 

0.5. 

 

 
Fig. 9. Lineouts through steel bar for analytic and iterative reconstruction 

with signoidal power ray weighting.  The sigmoidal center was set at 0.5 

while the strength was varied. 

III. FUTURE WORK 

There are several directions for future work.  We now 

need to apply these techniques to a wide variety of data to 

determine when they are applicable and whether the effects 

of containment, clutter and concealment can be reduced in 

the feature spaces that automatic threat detection are 

performed in. 
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